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Abstract

Curriculum learning has been growing in the domain of
reinforcement learning as a method of improving training
efficiency for various tasks. It involves modifying the diffi-
culty (lessons) of the environment as the agent learns, in or-
der to encourage more optimal agent behavior and higher
reward states. However, most curriculum learning methods
currently involve discrete transitions of the curriculum or pre-
defined steps by the programmer or using automatic curricu-
lum learning on only a small subset training such as only on
an adversary. In this paper, we propose a novel approach to
curriculum learning that uses a Setter Model to automatically
generate an action space (S), adversary strength α, intializa-
tion, and bunching strength (β). Our setter model architec-
ture is a MLP neural network with loss function defined by
the previously mentioned three variables. To perform gradi-
ent descent, we use the summed log probabilities of the dis-
tributions over the three model parameters, S, α, and β, and
weight each by negative average reward over the last three
timesteps. To incorporate the setter model’s inputs into the
training of the RL agent, we use Algorithm 2, which essen-
tially updates the environment after a certain number of roll-
outs, then uses the agent’s actions to train the setter. The
outputs of the setter are then used once again to update the
environment.

We evaluate the efficacy of our automated curriculum
learning method in a custom bus-system environment we cre-
ate, intending to simulate real-world public transportation
systems. We adapt our method to work well with the bus-
system environment. We compare our novel curriculum learn-
ing setter framework to a baseline model with no curricu-
lum learning, as well as two other popular curriculum learn-
ing methods frameworks. The results show that curriculum
learning with the setter model in its current architecture is
slightly outperformed by the baseline model with no curricu-
lum learning. Despite this, it tends to reach maximum re-
wards faster, is more stability, and considerably easier to use
out-of-the-box (due to not needing to develop an actual cur-
riculum) than the other baseline curriculum learning style
approaches,“stagnation” and “budget”, meaning it still has

potential for future development.

We also analyze the curriculum of lessons that our setter
model creates. We find that when analyzing the action space S
that the setter curriculum develops (as seen in Figure 4) starts
with a high exploratory beginning that explores all kinds of
different action spaces but around 15000 steps begins to con-
verge to S = 6. However, even after primarily converging
the model still tries to set various action spaces as the reward
plateaus which hints that the setter model tries to break out of
the plateau using the action space. A similar pattern is seen
when analyzing Figure 5 which is the adversary strength as
the model initially explores different α values but converges
to α = 0 at around 5000 steps. Again, similarly when analyz-
ing Figure 6 which plots the bunching strength β as training
goes on. The similar pattern of a lot of exploration in the be-
ginning is true but eventually converges to a middle bunching
strength of β = 5. There is not as many different β explo-
rations after converging when compared to the action space
S which could indicate that the action space plays a larger
role in the curriculum.

In our experiments, we also perform ablation studies on
the environment in addition to values that the setter model
is able to change. Specifically, we run experiments allowing
the setter to modify only one of the action space, perturbation
strength, and bunching strength, pairs of the variables, and
then all three. The idea behind this is to see which parameters
are most crucial to curriculum learning’s impact on agent
performance. We find that allowing the setter to affect just
one variable at a time leads to the best performance, while the
experiment run with all three variables is the slowest to con-
verge to maximum reward. This could indicate that the model
is being overloaded and does not have the capacity for all 3,
and that a more complex model architecture is required. We
also run an ablation study on our baseline model without cur-
riculum learning to test the impact of domain randomization
on performance. We note that the agent’s performance stag-
nates without domain randomization, indicating that the in-
troduction of random training examples significantly to model
real world cases helps the agent learn.



1. Introduction
Transportation and traffic optimization is a well known

area of study, especially for reinforcement learning based so-
lutions. We specifically look at the bus bunching problem
for the context of this study. The main idea of the problem
is to minimize the delays caused by inefficient bus timings
for passengers arriving and departing from a system of buses.
While the heavy exploration in the area makes innovation and
improvement with regards to performance marginal, it simul-
taneously provides an effective baseline for developing new
generalized techniques. Our group is particularly interested
in examining curriculum learning and its effect on training
efficiency and overall performance. We decide to try a lesser
known approach to curriculum learning, in which the cur-
riculum is not fixed or discretely thresholded. Our method
for automated curriculum learning involves a curriculum that
is dynamically chosen and learned by an adversary network
made to increase the difficulty of the agent’s training, and de-
fined by multiple forms of input. Our results are shown in the
following sections of this paper.

2. Related Works
Bus Systems Transportation is a commonly studied envi-
ronment for reinforcement learning experiments, and the bus
delay problem in particular is used for a multitude of rea-
sons. The first is likely due to the solution for bus bunching
requiring sequential decision making, making it a natural fit
for a reinforcement learning agent. If a solution for delays
is implemented, buses need to decide which action they will
take in between each stop, and this is easy represented in a
simulated environment. Additionally, real life traffic systems
are dynamic and often times completely random due to ac-
cidents, weather, etc., allowing RL models to learn how to
adjust to perturbations and not overfit to an unrealistic en-
vironment. Many solutions are offered each year to reduce
bus waiting time without increasing traffic, such as the one
proposed by [6]. We believe that due to the high volume of
research towards this problem, it will serve as an excellent
baseline for developing new techniques, which if successful
can then be applied towards more novel environments.

Curriculum Learning Curriculum learning is a popular
and effective method for improving RL agent performance
and efficiency in a variety of environments by guiding agent
actions. Several studies have investigated the impact of task
sequencing on the learning performance and sample effi-
ciency of RL agents. In general, many propose a curriculum
learning framework that intelligently orders tasks to gradu-
ally increase in difficulty. By strategically sequencing tasks,
agents were shown to not only achieve faster convergence and
higher reward states, but improved generalization across a
range of environments. Traffic and transportation optimiza-

tion is also a commonly examined environment for evalu-
ating all types of reinforcement learning algorithms. Other
attempts, such as the ones proposed by [3, 4], use curricu-
lum learning to improve upon learning efficiency in various
frameworks, however not explicitly in the bus bunching set-
ting. Additionally, others have examined curriculum learning
discretely through the lens of an “adversary,” but use a de-
terministic algorithm rather than a model to define the adver-
sary’s actions throughout training. Our research aims to au-
tomate a dynamic adversarial alongside action space and ini-
tializations in the bus bunching environment through a neural
network. One area that we focus on specifically is the idea of
a teacher-student model, as described by [8]. The main idea
of this curriculum learning framework is to have one primary
model, also referred to as the student, learn the actual task,
while a teacher model learns the optimal learning parameters
for the student.

Automated Curriculum Learning Typically, self play in
reinforcement learning has only been possible in symmet-
ric games between two agents. Curriculum learning meth-
ods would have to rely on human designed curricula, which
often required extensive domain knowledge and time spent.
Several methods for automating the creation of a curricu-
lum include varying environment, as suggested by [12], in
which they trained environments separately with agents, al-
though this resulted in overfitted agents only specialized for
their sub-environment. Another technique that has been tried
is optimal task selection, as proposed by [1], although this
was proven to be extremely computationally expensive once
environments grew more complex. However [4] introduce
a novel method for the automation of curriculum design for
curriculum-based RL. Their introduction of a setter-solver
paradigm proved to be highly effective in making curriculum
learning based methods much more efficient. We aim to build
upon this by using a deep neural network that can impact var-
ious parts of the training environment.

3. Method
3.1. Bus Environment

We formulate the bus line corridor model with m uni-
formly distributed stations, sj , j = 1, 2, ...,m. There are n
buses, bi, i = 1, 2, ..., n, driving on this route with a con-
stant average speed v. The general setup of the framework is
shown in Figure 1. The environment assumes the following
assumptions:

• The route is a simple loop with stations evenly dis-
tributed along [11].

• Without loss of generality, all delays incur at bus stops.
Each bus travels at a constant speed, and traffic or other
factors do not affect it.



• Each bus spends a fixed amount of time at each station
for boarding and alighting.

• The bus system is a frequency-based system. All the
buses are initialized at station sj with a constant interval
of headway H .

• When there is bus bunching at station sj , the probability
for the passengers to board each bus is equal.

• Boarding and alighting occur concurrently and adhere to
a proportional pattern based on passenger counts. Each
passenger’s time to board and exit is consistently τb and
τa minutes at every stop. The bus must wait for both pro-
cesses to complete before it can depart, with the longer
of the two processes dictating the overall stop duration
at a certain station.

• A bus can choose to skip at any station. If a bus decides
at station sj to skip the next station sj+1, it must alight
all the passengers whose destinations are sj+1 at station
sj and make the next stop at station sj+2.

• A bus can choose to turn around at any station. Without
loss of generality, a bus decides at station sj , j ≤ ⌊m/2⌋
to turn around. It must alight all the passengers whose
destinations are sk, k = j + 1, ..., ⌊m/2⌋. The symbol
⌊·⌋ denotes the floor function, which rounds down to the
nearest integer.

• At any given bus stop sj , the arrival of passengers is de-
scribed by a Poisson distribution with a rate of λj . For
a passenger at stop sj , their destination is selected ran-
domly and with equal chance from the next ⌊(m− j)/2⌋
stops.

• There is a capacity C for each bus. In this paper, C =
60.

Figure 1. Visualization of the Bus Line simulator

In our training environment, 5 passenger statuses are de-
fined as shown in Table 1. Passengers might be waiting at a
station, get on a bus and alighted. When alighted, he might
still be waiting since the passenger has not arrived or he might

Status Meaning
0 Waiting
1 On bus
2 Alighted and Waiting
3 Alighted and Arriving
4 Leaving after a long wait

Table 1. The 5 different passenger statuses in our Bus Environment.

arrive and leave the system. Also, when waiting time is larger
than the headway, passengers will have a 50% possibility to
leave the station as a penalty for a long wait.

The total reward is defined as R = α Tw

Nw
+β Tb

Nb
, where Tw

refers to the total passenger waiting time, Tb refers to the total
passenger time on bus, Nw refers to the total number of wait-
ing passengers, Nb refers to the total number of passengers
on bus, and α, β ∈ R are the weighting parameters.

Both discrete and combined action spaces are feasible for
bus operation. On continuous action spaces, standard PPO
is unstable when rewards vanish outside bounded support
[5]. Since combined action spaces include continuous ac-
tion spaces, we choose discrete action spaces for RL in our
model. The action values are shown in Table 2 and action
spaces are shown in Table 4. The action space for holding
is discretized into an interval of 10s (For example, an action
value of 5 means an action of holding for 50s.) Discrete ac-
tion space introduces simplicity to the problem-solving pro-
cess by transforming a combined action space into a man-
ageable set of discrete options for the agent to select from,
thereby making the learning algorithm more tractable. Fur-
thermore, combined action spaces are susceptible to stability
challenges during training, since minimal alterations in pol-
icy could precipitate substantial changes in action outcomes;
discretization mitigates this issue, enhancing stability. More-
over, discretization of the action space can significantly re-
duce the computational resources required for policy evalua-
tion and improvement, which is beneficial for real-world ap-
plications where quick decisions may be necessary.

3.1.1 Adversary: Perturbations

In our bus environment, we parameterize the environment
with a perturbation that we treat as an adversary. Instead
of the typical adversary, our perturbation adversary just ran-
domly adds a fixed perturbation strength α with probability
0.01 at each time step on a random bus. The perturbation
simply adds α timesteps to the bus’s travel time from trav-
elining from station to station. We discretize α from 0 to 4.
We chose to model an adversary in this way in order to bet-
ter model real life bus systems where a perturbation would
represent the breaking down of a bus that causes an extensive
delay in its travel time.



Combined Action Space Discrete Action Space
High-level Action Low-level Action Discrete Action

Holding 0 Holding time
0, 1, 2, 3, 4, 5, 6,

7, 8, 9, 10, 11
Skipping 1 / 12

Turning Around 2 / 13

Table 2. Action Values

Combined Action Space Discrete Action Space
High-level Action Low-level Action Discrete Action

Holding Discrete(2)
Box(low=0,

high=1, shape=(1,)) Discrete(12)

Skipping Discrete(2) / Discrete(2)
Turning Around Discrete(2) / Discrete(2)

Combined Strategies Discrete(3)
Box(low=0,

high=1, shape=(2,)) Discrete(14)

Table 3. Action Spaces

3.1.2 Bus Initializations

In our bus environment, we parameterize a bunching strength
that determines the initial bunchedness of the buses. We
model the initialization this as a way to model the bunching
problems that occurs in bus systems. These bunches create
slow downs so we parameterized these initializations to be
a part of the curriculum in order to create more instances in
training where the buses are bunched and the model is forced
to deal with these instances. We do this by defining a β which
goes from 1 to 10 to represent the amount of bunching at
the initialization. The buses are initially distributed follow-
ing Algorithm 1. The bus initialization is created by first uni-
formly sampling β station indexes from all possible stations,
and centering an independent Gaussian with fixed variance
on each sampled station. Next, for each bus, one of the cre-
ated Gaussians is chosen uniformly at random, and the bus’s
starting station is sampled from this chosen Gaussian. This
means that a lower bunching strength value indicates more
bunching, and a higher value, in expectation, indicates more
of a spread.

3.2. Domain Randomization

In bus operation deployment, it’s crucial for the Reinforce-
ment Learning (RL) algorithm to withstand the unpredictabil-
ity of actual bus timetables. Factors like unforeseen delays or
abrupt increases in passenger numbers can interfere with the
efficiency of bus services, leading to complications such as
buses clustering together. Consequently, the RL algorithm
needs to be designed to cope with these kinds of delays. To
bridge the gap between simulation and reality, we incorpo-
rated Domain Randomization (DR) in our training process.

The key rationale for DR is to inject variability into the

Algorithm 1 Bus Initialization Algorithm

1: Sample β stations s1 · · · sβ uniformly at random with re-
placement

2: for each station si in sampled stations do
3: Zi ← N (i, 2.5)
4: end for
5: for each bus j in NUM BUSES do
6: Sample Gaussian Zj uniformly with replacement

from Z1, . . . , Zn

7: Sample station sj as the start location for bus bj from
Gaussian Zj

8: end for

training setting, thereby enhancing the RL agent’s ability to
adapt to unexpected situations in real-life scenarios. DR fa-
cilitates the creation of multiple simulated environments with
varied randomized characteristics, aiming to train a model
that functions effectively across these scenarios. This model
is expected to be versatile in real-world conditions, as the ac-
tual system is likely to be a manifestation of the range of train-
ing variations.

In DR, the training environment is the primary domain we
can fully access, while the actual bus operations represent the
target domain for application. We train the model in the pri-
mary domain, manipulating a set of N randomization param-
eters in this domain eξ, with the configuration ξ drawn from
a randomization space.

DR models the differences between the primary and target
domains as variations in the primary domain. During pol-
icy training, we collect episodes from the primary domain
eξ using randomization, helping the policy familiarize itself
with a variety of environments and improve its generalization



ability. The policy parameter θ is optimized to maximize the
average expected reward R across different configurations:

θ∗ = argmax
θ

Eξ∼Ξ

[
Eπθ,τ∼eξ [R(τ)]

]
Here, τξ is a trajectory gathered in the primary domain

randomized with ξ. We then apply DR to passenger arrival
rates and bus schedules.

Following the methodology of Sánchez-Martı́nez et al. [9],
we set the adjustment factor range from 0 to 2. The cho-
sen arrival rates are designed to result in a peak bus load of
75% capacity in high-crowding scenarios and 25% in low-
crowding. Similarly, we define three different levels of pas-
senger arrival rates. Without DR, the passenger arrival rate
is fixed at λ. The demand levels are represented by parame-
ters l1, l2, l3, denoted as L = {l1, l2, l3}. We set l1 = 1.25
in high-crowding cases, l1 = 1.0 in normal scenarios, and
l1 = 0.75 in low-crowding situations. The adjusted passen-
ger arrival rate with DR is λ∗, and demand levels l1, l2, l3 are
randomly chosen, so λ∗ = rand(L)λ. This variability equips
the RL agent to handle peak and off-peak conditions, and any
unplanned spikes in passenger numbers.

Additionally, Gaussian noise is added to the demand levels
l1, l2, l3 to further increase randomness. These randomized
demand levels are clipped within the initial demand levels
array L to keep them realistic and within set limits. The mod-
ified demand levels are then used to determine the passenger
arrival rate, influencing the generation of passenger arrival
times. This DR approach ensures a wide range of possible
scenarios in the generated passenger arrival tables, contribut-
ing to a more generalized and adaptable model.

Considering that delays are common in bus operations, we
included random delays in our training environment. Train-
ing the agent with these random delays aims to make it adapt-
able to various conditions and ensure smooth operations. The
random delay rd is added every time a bus departs a station,
following a uniform distribution:

rd ∼ U [mindelay,maxdelay]

We view the learning randomization parameters in DR as
a two-level optimization problem. We assume access to real-
world bus operations ereal and that the randomization settings
(demand level and random delay) are sampled from a distri-
bution parameterized by ϕ, ξ ∼ Pϕ(ξ). Our objective is to
learn a distribution on which a policy πθ can be trained to
achieve optimal performance in ereal:

ϕ∗ = argmin
ϕ
L
(
πθ∗(ϕ); ereal

)
θ∗(ϕ) = argmin

θ
Eξ∼Pϕ(ξ) [L (πθ; eξ)]

where L(π; e) is the loss function of policy π evaluated in the
environment e.

3.3. PPO

Proximal Policy Optimization, more commonly referred
to as PPO or the PPO algorithm, is a widely used optimiza-
tion algorithm introduced by [5] in 2017 for training agents
in sequential decision making tasks. It’s similar to the well
known REINFORCE algorithm, and is another policy gradi-
ent method. We decide to use this algorithm in our experi-
ments due to its tendency for high stability and sample effi-
ciency.

3.4. Setter-Based Curriculum Learning

Setter Model Based on the framework proposed by Sheng
et al. [4], our setter model creates ’lessons’ which update the
environment in which the model is trained on. To define the
setter, we first must define its input parameters. The input
are the previous 3 lessons ϕ and the previous 3 rewards. We
define a lesson as a part of a curriculum that contains (S, α,
β) to parameterize the environment. The first part of the les-
son ϕ is the S which is an index over the action space which
corresponds to a specific action mask which is a combina-
tion of holding values, skipping, and turning (reference Ap-
pendix Figure 4 for more specific details). Though not ev-
ery one of the possible 63 combinations of available actions
was given to the model, the action mask is discretized using
a representative group of 15 combinations. The second part
of the lesson ϕ is adversary strength (α), which we define as
the expected total time of delays caused by random perturba-
tions affecting buses. The third part of the lesson ϕ is bunch-
ing strength (β), which we define as the distribution of buses
among the stations when the environment is initially created,
as described in an earlier section. The final input is the pre-
vious rewards corresponding to after training on these previ-
ous lessons. Similar to the REINFORCE algorithm, we use
mean log probabilities to estimate the gradient over the action
space. The setter model loss is defined as follows (where π
represents the probability distribution over the state space):

Lsetter = −r[t−3:t] · (log πS + log πα + log πβ)

As seen in the equation above, the mean reward is weighted
by the log probabilities of each of the three other components
of the setter model loss (S, α, β), and this is used to perform
gradient descent on the model to update its parameters.

Environment Update Algorithm Setter-based curriculum
learning makes use of the setter model described in the pre-
vious section to adjust environment variables for the agent as
it learns the optimal policy. As mentioned earlier, it uses its
input variable to compute ”lessons” in the form of adjusted
environments where the agent can learn in. We use Algo-
rithm 2 to update the environment using the setter. At each
update step in Algorithm 2, the model uses rewards, avail-
able actions, adversary strength, and bunching strength from



the previous three time steps to compute the curriculum for
the next time step. The rewards from this time step are then
passed back into the model, which updates its parameters and
potentially generates a different curriculum for the next cur-
riculum update step.

Algorithm 2 Setter-Based Curriculum Learning
Initialize: Environment E , rollout buffer D, agent’s policy
πθ(a|s) and corresponding parameter θ
Initialize: Setter model τ , step size η, available actions S,
adversary strength α, bunching strength β, global steps Ttotal

1: for i in Niter do
2: θi ← θi−1

3: Compute lesson ϕ from τ such that ϕ =
τ(rt−3:t, St−4:t−1, αt−3:t, βt−3:t)

4: Update environment according to ϕ
5: for t in Ttrajectory do
6: Sample action at ∼ πθ(a|s) in environment
7: Get the next state st+1 by taking Aadv, and store

(st, Aadv, rt, st+1) in D
8: end for
9: Update τ using rt, St, αt, βt

10: Optimize parameter θi using D
11: end for

4. Experiments

4.1. Experimental Setting

Bus Environment We run all our experiments using the
same Bus Environment environment described in Sec.3.1 and
use the same parameters for all of our runs. We use 10 bus
stations, 14 buses, bus capacity of 60, distance between sta-
tions of 1 km.

Baselines We use the following 3 methods as a baseline
to compare our setter-based curriculum learning model. We
trained each curriculum learning model on an easy-first cur-
riculum, hard-first curriculum, and combination curriculum
and take the best as the baseline for each respective curricu-
lum learning method. For our experiments we define the we
define the easy-first curriculum as seen in Appendix Figure
5, the hard-first curriculum as seen in Appendix Figure 6, and
the combination curriculum as seen in Appendix Figure 7.
The baseline curriculum learning methods are as follow:

• No Curriculum Learning: Under this baseline the
model has access to all the actions during all time steps
and the bus placement initialization is the standard in-
tialization where all buses start in the same station and
gradually leave one by one. In addition, there is no ran-
dom perturbations.

• Budget Based Curriculum: This framework is inspired
by the approach used by Sheng et al. [7]. Unlike their
paper, however, our curriculum does not monotonically
increase in difficulty, in fact in some experiments, it is
set to decrease. Essentially, a total ”budget” is given
throughout all training steps, and each environment state
is preset in advance. The curriculum used for a given
timestep is defined as follows:

ϕt = bm if t ∈ [tm, t+ Tbm)

The curriculum is discretely defined in different ways
for different portions of the total training steps.

• Stagnancy Based Curriculum: The stagnancy frame-
work is based on the idea that if the reward is stalled for
a certain period of time, then the environment should be
changed to potentially induce an increase in reward. Es-
sentially, if reward does not increase by a certain amount
within a certain number of timesteps, the environment
will either be made easier or more difficult depending
on a preset curriculum. This framework was inspired by
curriculum adversarial training of [2], but adapted to suit
our environment.

4.2. Results

4.2.1 Baselines

No Curriculum Method The rewards for the No Curricu-
lum Method is in Figure 2.A which works quite well as it is
able to quickly reach high rewards and is fairly stable.

Budget Based Curriculum Method We compare the per-
formance of our budget based curriculum on the 3 different
fixed curriculums, easy-first, hard-first, and combination. We
compare these methods and use the best for comparison as the
baseline model for the budget based curriculum. From Fig-
ure 2.B we can tell that an easy-first curriculum works best
based on stability and reward, thus we use the easy-first cur-
riculum for the Budget Based method as the baseline. Exact
experiment input can be seen in Appendix tables 5, 6, and 7

Stagnant Based Curriculum We compare the perfor-
mance of our stagnancy based curriculum on the 3 different
fixed curriculums, easy-first, hard-first, and combination. We
compare these methods and use the best for comparison as
the baseline model for the stagnancy based curriculum. From
Figure 2.C we can tell that an easy-first curriculum works best
thus we use the easy-first curriculum for the Stagnant Based
method as the baseline.

4.2.2 Overall Comparison

The results for the overall comparison of the various frame-
works can be seen in Figure 3. The setter model outperforms



Figure 2. The three baseline methods used in our experiments

the budget method and the stagnation methods seen above,
but seems to slightly underperform when compared to the no
curriculum method. This seems to suggest that it has poten-
tial, but in its current state could require more finetuning. The
setter has potential as it does not require as much domain spe-
cific knowledge and time designing curriculum with various
lessons yet is still able to outperform these methods. We also
suspect that the model suffers from high variance as we use
the REINFORCE algorithm with sampling to get the rewards
that the setter model uses a signal. However, long evaluation
times limited the number of trajectories we could use and the
length of these trajectories, thus forcing us to keep these rel-
atively short and thus even higher variance.

Figure 3. Comparing the baseline methods to our Setter Curriculum
Method

4.3. Analysis

4.3.1 Setter Curriculum

In this section, we analyze the the actually Curriculum that
our Setter Model generates during training. We examine the
Setter Model’s Lessons ϕ which consist of the Action Space

(S), Perturbation Strength (α), and Bunching Strength (β)
values.

Action Space (S) As seen in Figure 4, the setter model ex-
perimented with both high and low action spaces earlier on,
then started to converge around a value of 6 available ac-
tions at around 17000 steps. This seems to imply that 6 is
an optimal value for model performance with regard to the
actions that the agent is allowed to take. This hints that an ef-
fective curriculum method experiments with different lessons
and will thus use which ever lesson works best for learning.
It is also important to note that even while the model is pri-
marily outputting S = 6 the model will still occasionally ex-
periment with other values, which could be that as the reward
plateaus the model tries different S values.

Figure 4. Visualizing the Action Space (S) of the different lessons
ϕ from the Setter Model

Perturbation Strength (α) As seen in Figure 5, the pertur-
bation strength follows a similar pattern to the Action Space
Curriculum with more exploration towards the beginning and



the converging to a perturbation strength of 0. At the begin-
ning the model seems to explore a lot more with the higher
values and almost never explores 0 but as the α converges to
0 there is less exploration above 0 and explorations only go
to 1. This could hint that while the reward is also converging
and the model is trying to reach higher rewards, the pertur-
bation strength as we have defined is not as key of a part of
the curriculum. In addition, the perturbation strengths also
converge to 0 at around 5000 steps which could hint that the
model was able to more quickly learn that α is not an effective
way of achieving more performance.

Figure 5. Visualizing the Perturbation Strength (α) of the different
lessons ϕ from the Setter Model

Bunching Strength (β) As seen in Figure 6, the bunching
strength follows a similar pattern to both the Action Space (S)
and the Perturbation Strength (α) where the beginning is a lot
of exploration and variation in β values but begins to con-
verge around 20000 steps. This could indicate that bunching
strength α can add a fair amount of variation to the training
and is thus used heavily while the reward has not converged.
While the β values converge to 5 there is not as many spikes
as in the action space which could indicate that it is less ef-
fective in increasing reward as a curriculum.

4.4. Ablation Study

4.4.1 Contribution from Domain Randomization

In this section we ablate between using Domain Randomiza-
tion [10] as described in Section 3.2. In this experiment, we
use no curriculum learning and all other standard settings. We
find that without Domain Randomization the model stagnates
at a considerably lower reward. This demonstrates that us-
ing Domain Randomization vastly improves the performance
and this is likely due to the model benefiting from experi-
encing a larger variety of training situations which are more

Figure 6. Visualizing the Bunching Strength (β) of the different
lessons ϕ from the Setter Model

representative of the variety of situations that can arise dur-
ing test time. In addition, in Bus Systems where things like
bus bunching can form from these small random delays in the
buses, Domain Randomization is a core part of the method-
ology to appropriately model these situations and create a ro-
bust bus system that can handle them.

Figure 7. Ablating Domain Randomization

4.4.2 Setter Curriculum

In this ablation study we ablate over the lessons ϕ and
whether the model has control over the action space (S), per-
turbation strength (α), and bunching strength (β). In this ex-
periment we experiment with all the variations of different
Curriculum possibilities as seen in Figure 8. We find that
experiments where the Setter only affects α, β, or S the per-
formance is better which could signify that having the setter
create lessons ϕ based on all 3 of even combinations over-



loads the model and the model is unable to do it as effectively.
This could signify that our Setter model does not have enough
capacity to handle all of these options and is able to perform
better. This is similar when looking at the combinations as
S + α and α + β are able to perform better than S + α + β
which hints the model could be overloaded without enough
capacity.

Figure 8. Ablating Setter Curriculum Lessons ϕ

5. Conclusion
Throughout this paper, we described a new method for

generating dynamic curricula throughout the training process
of a reinforcement learning agent. The setter model takes
in various environmental parameters, as well as previous re-
wards, and attempts to learn the optimal next environment to
induce faster learning for the agent. We demonstrated that
this approach has potential, since it outperformed two of the
three baselines that we provided. There is still much more
room for development, however, potentially in different envi-
ronments and using different architectures. One approach in
particular could be to try a more complex model or loss func-
tion. Since the baseline model with no curriculum learning
already performs well, perhaps a more difficult environment
overall could be more suitable for curriculum learning based
frameworks.

6. Contribution
Group Contribution Danny and Avi are enrolled in
CS285. Yuhan was originally on the waitlist while forming
the group but ended up just auditing the class. Yuhan primar-
ily implemented the basic bus environment and the domain
randomization. Avi and Danny primarily worked together to
implement the setter and the necessary framework and ran ex-
periments. The writing of the paper was generally split evenly
between everyone.
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7. Appendix

Action Space (S) Holding Skipping Turning
0 0 holding Yes Yes
1 0 holding Yes No
2 0 holding No Yes
3 0-40 holding Yes No
4 0-40 holding Yes Yes
5 0-40 holding No No
6 0-40 holding No Yes
7 0-80 holding Yes No
8 0-80 holding Yes Yes
9 0-80 holding No No
10 0-80 holding No Yes
11 0-120 holding Yes No
12 0-120 holding Yes Yes
13 0-120 holding No No
14 0-120 holding No Yes

Table 4. Action Space (S)

Difficulty Level action mask levels perturbation levels bunching levels difficulty thresholds
1 0 0 10 0.01
2 0,1 0 10 0.01
3 0,1,2 0 9 0.08
4 0,1,2,3 1 9 0.04
5 0,1,2,3,4 1 8 0.04
6 0,1,2,3,4,5 1 8 0.04
7 0,1,2,3,4,5,6 2 7 0.04
8 0,1,2,3,4,5,6,7 2 7 0.04
9 0,1,2,3,4,5,6,7,8 2 6 0.04

10 0,1,2,3,4,5,6,7,8,9 3 6 0.04
11 0,1,2,3,4,5,6,7,8,9,10 3 5 0.04
12 0,1,2,3,4,5,6,7,8,9,10,11 3 5 0.04
13 0,1,2,3,4,5,6,7,8,9,10,11,12 4 4 0.04
14 0,1,2,3,4,5,6,7,8,9,10,11,13 4 4 0.1
15 0,1,2,3,4,5,6,7,8,9,10,11,12,13 4 3 0.1
16 0,1,2,3,4,5,6,7,8,9,10,11,12,13 4 3 0.3

Table 5. Easy First Configuration



Difficulty Level action mask levels perturbation levels bunching levels difficulty thresholds
1 0 4 3 0.01
2 0,1,2,3,4,5,6,7,8,9,10,11,12,13 4 3 0.19
3 0,1,2,3,4,5,6,7,8,9,10,11,13 4 4 0.038
4 0,1,2,3,4,5,6,7,8,9,10,11,12 4 4 0.038
5 0,1,2,3,4,5,6,7,8,9,10,11 3 5 0.038
6 0,1,2,3,4,5,6,7,8,9,10 3 5 0.038
7 0,1,2,3,4,5,6,7,8,9 3 6 0.038
8 0,1,2,3,4,5,6,7,8 2 6 0.038
9 0,1,2,3,4,5,6,7 2 7 0.038

10 0,1,2,3,4,5,6 2 7 0.038
11 0,1,2,3,4,5 1 8 0.038
12 0,1,2,3,4 1 8 0.038
13 0,1,2,3 1 9 0.038
14 0,1,2 0 9 0.038
15 0,1 0 10 0.038
16 0,1,2,3,4,5,6,7,8,9,10,11,12,13 2 10 0.3

Table 6. Hard First Configuration

Difficulty Level action mask levels perturbation levels bunching levels difficulty thresholds
1 0 2 1 0.01
2 0,1,2,3 2 1 0.06
3 0,1,2,3,4,5,6 2 1 0.07
4 0,1,2,3,4,5,6,7,8,9,10,11 2 1 0.07
5 12 2 1 0.07
6 13 2 1 0.07
7 0,1,2,3,4,5,6,7,8,9,10,11,12 2 1 0.07
8 0,1,2,3,4,5,6,7,8,9,10,11,13 2 1 0.07
9 12,13 2 1 0.07

10 0,1,2,3,4,12 2 1 0.07
11 0,1,2,3,4,13 2 1 0.07
12 0,1,2,3,4,5,6,7,8,9,10,11,12,13 2 1 0.07

Table 7. Various Combinations Configuration
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